RADUMERIS TASMANIENSIS SAUSSURE IN NEW
ZEALAND: DISTRIBUTION AND POTENTIAL HOST
RANGE

B. WILLOUGHBY1, D. WILSON1 and B. BARRATT2

1AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton
2AgResearch, Invermay Research Centre, Private Bag 50034, Mosgiel

Corresponding author: bruce.willoughby@agresearch.co.nz

The yellow flower wasp (\textit{Radumeris tasmaniensis}) was first reported in Northland, New Zealand, in February 2000 at three locations, Herekino and Twilight on the west coast and Whareana on the east. \textit{Radumeris tasmaniensis} is a solitary wasp that occurs extensively in Australia and Papua New Guinea, and is a parastoid of large (>1.5 g) scarab larvae. As the threat to native Scarabaeidae was unknown, MAF Biosecurity commissioned a survey to determine the distribution and potential host range of \textit{R. tasmaniensis}. A delineation survey using Malaise, attractant, pitfall, and sticky traps conducted over February and March 2001 at 40 sites on both coasts of Northland confirmed that \textit{R. tasmaniensis} had only established at the three original sites. Parasitised scarab larvae were not detected in a concurrent soil fauna survey. However, circumstantial evidence indicated that larvae of the sand scarab (\textit{Pericoptus truncatus}), a suitable size for \textit{R. tasmaniensis} larvae, were the primary hosts. Adult \textit{R. tasmaniensis} were only observed in dune country, the habitat of the sand scarab and were active during March when the sand scarab larvae were present. African black beetle (\textit{Heteronychus arator}) reaches pest populations in pasture in Northland and is a potential host. However, it was scarce in dune land and was in the adult stage during March so was not available as a host to \textit{R. tasmaniensis}.

GC-EAD STUDIES OF STRIPED CUCUMBER BEETLE
(\textit{ACALYMMA VITTATUM}) AGGREGATION PHEROMONE

B. MORRIS1 and R. RICE SMYTH2

1The Horticulture and Food Research Institute of New Zealand, Mt. Albert Research Centre, Private Bag 92169, Auckland, New Zealand
2Department of Entomology, Cornell University, Ithaca, NY 14853, USA

Corresponding author: bruce.morris@hortresearch.co.nz

Field trapping studies in New York using caged striped cucumber beetles (\textit{Acalymma vittatum}) with cucumber seedlings as trap lures have demonstrated the presence of a male-produced aggregation pheromone for this species. Consequently we undertook a study to identify pheromone components using gas chromatography coupled to an electroantennographic detector (GC-EAD). Effluvia were collected from feeding male beetles using Super-Q porous polymer, or by solid phase microextraction (SPME) with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) coated fibre. These collections contained one GC peak that consistently gave a large EAD response from female antennae. However, analysis of this peak by GC-MS gave a poor mass spectrum with insufficient diagnostic ions to identify the pheromone.

© 2001 New Zealand Plant Protection Society (Inc.) www.nzpps.org
Refer to http://www.nzpps.org/terms_of_use.html